二重积分极坐标(极坐标二重积分公式推导)
本文目录
一、二重积分极坐标算法怎样确定角范围
一、一般分3种情况:
原点(极点)在积分区域的内部,角度范围从0到2pi;
2.原点(极点)在积分区域的边界,角度范围从区域的边界,按逆时针方向扫过去,到另一条止;
3.原点(极点)在积分区域之外,角度范围从区域的靠极轴的边界,按逆时针方向扫过去,到另一条止。
二、方法:
1、将积分区域,分成一个个单连通区域;
2、所谓的单连通区域,就是任何极半径,最多只能穿透一次、再触及区域曲线;
3、每一个单连通区域,都具有两根切线;
4、对每一个单连通区域,积分时的角度,按顺时针方向,从第一根切线的角度,积分到第二根曲线的角度;
5、整体的积分,就是对每个单连通区域的积分,然后求和,得到最后结果;
6、角度必须是弧度制
二、二重积分极坐标p的取值范围怎么转换获得
二重积分中的极坐标转换为直角坐标,只要把被积函数中的ρcosθ,ρsinθ分别换成x,y。并把极坐标系中的面积元素ρdρdθ换成直角坐标系中的面积元素dxdy。即:ρcosθ=xρsinθ=yρdρdθ=dxdy
三、二重积分求重心坐标公式
考研二重积分中的形心计算公式是∫∫Dxdxdy=重心横坐标×D的面积,∫∫Dydxdy=重心纵坐标×D的面积。
扩展资料:
高等数学作为大多数专业研究生考试的必考科目,其有自己固有的特点,大纲几乎不变,注重基本知识点的考察,注重学生的综合应用能力,考察学生解题的技巧。
二重积分作为考研数学必考的知识点,在解题方面有一定的技巧可循,本文针对研究生考试中二重积分的考察给出具有参考性的解题技巧。二重积分的一般计算步骤如下:画出积分区域D的草图;根据积分区域D以及被积函数的特点确定合适。
四、二重积分极坐标面积元素怎么理解
极坐标系里的二重积分r是指极坐标的极径,表示平面坐标点到原点的距离。
在极坐标中求二重积分的注意事项:
1、在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
2、为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为
可得到二重积分在极坐标下的表达式:
扩展资料
当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。
五、极坐标二重积分公式推导
rdrdθ是进行坐标变换的产物.dxdy=rdrdθ,这是从直角坐标系变换到极坐标系.其中的r是由雅可比行列式计算得出的.也可以直接由面积公式计算,极坐标下ds=rdθ*dr=rdrdθ之所以只见到rdr,是因为dθ提到前面去了进行等量代换不一定都有几何意义的.f(rcosθ,rsinθ)rdr这种东西的几何意义可以理解为面密度为f(rcosθ,rsinθ)时圆的面积的1/π
声明 : 本文内容及图片来源于读者投稿以及网络,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到i084881@163.com,我们会及时做删除处理。